

## R&D for the production of innovative radioelements at GANIL

C. Barthe-Dejean, M. Fadil, <u>G. de France</u>, F. De Oliveira, H. Franberg, A.M. Frelin-Labalme, X. Ledoux, M. Michel, M.H. Moscatello, S. Perat, C. Stodel

2nd French-Czech « Barrande » Nuclear Research Workshop, Honfleur, April 24-26, 2019





- Current projects
  - At-211
  - $\square$  Other  $\alpha$  emitters
  - Dosimetry
  - Liquid target





- Current projects
  At-211
  Other α emitters
  Dosimetry
  - Liquid target



## **Motivations**

- A strong request from society which research labs like GANIL can partly address
- An R&D on the production of innovative radioelements for nuclear medicine
- A new field to exploit at best the potentialities of the new LINAC
- Endorsed by the GANIL Scientific Council
- In the SPIRAL2 blue paper
- Outcome might serve fundamental research



## **Opportunities at SPIRAL2**

- □ Limited current (cyclotrons):
  - Dedicated machines, not optimized for R&D production of new isotopes (fixed energy) => cross-section, contamination,...
  - Only proton, deuteron and/or alpha
  - Target not designed for high beam intensities
- New possibilities at SPIRAL2:
  - Very intense beams at optimal energy
  - New beams compared to existing production facility machines



## The SPIRAL2 LINAC



| alpha     | 3 | 2-20   |
|-----------|---|--------|
| ons (1/3) | 1 | 2-14.5 |









## Strategy for radio-isotopes

#### Strategy:

- Only R&D
- Collaboration
- Targeted goals
- Focus on alpha emitters

#### □ Current isotopes of interest:

- <sup>211</sup>At (ARRONAX et al)
- $\square$   $\alpha$ +Th reaction products





- Current projects
  At-211
  Other α emitters
  Dosimetry
  - Liquid target



## <sup>211</sup>At at NFS (1)

#### Production using $^{209}Bi(\alpha, 2n)^{211}At$

- Réaction
  - Reaction threshold 20.72 MeV
  - Cross section max 900 mb at 30 MeV
  - □ Production of contaminant <sup>210</sup>Po <sup>209</sup>Bi( $\alpha$ ,3n)<sup>210</sup>At → <sup>210</sup>Po, t<sub>1/2</sub> = 138 d, Et=28.61 MeV
  - □ Optimal energy  $\approx$ 30 MeV (ratio N<sup>210</sup>At/N<sup>211</sup>At < 10<sup>-4</sup>)
- Production estimate:
  - Alpha 28 MeV, 1 kW
  - Target : Bi on AIN backing
  - At-211 production : 9.6 GBq in 8h







- Target from ARRONAX
- Irradiation at SPIRAL2
  - Irradiation station in the converter room
  - Beam: 28 MeV α, 70 μA (3.15<sup>e</sup>14 α/s)
  - Tirr: 4 to 8h
  - Production of ~10GBq of At-211
  - Dose Rate after 30 min cooling: 0.25 mSv/h at 30 cm
- Irradiated targets sent to ARRONAX
- Extraction, labelling, QC at ARRONAX



## Thermal study

- 1kW deposited
- □ Two designs:
  - Target on cold copper
  - Direct backing water cooling
- Parameters:
  - Thermal resistance target-copper
  - Cooling liquid temperature



|                                      | résistance thermique     | 1KW | 1,5KW | 2KW |
|--------------------------------------|--------------------------|-----|-------|-----|
| solution plaquée (eau 15°C)          | 100 mm <sup>2</sup> .C/W | 188 | 292   |     |
|                                      | 200 mm <sup>2</sup> .C/W | 252 | 387   |     |
| solution plaquée (éthanol -30°C)     | 100 mm <sup>2</sup> .C/W | 140 | 243   |     |
|                                      | 200 mm <sup>2</sup> .C/W | 202 | 340   |     |
| solution contact eau (eau 15°C)      |                          | 156 | 228   | 309 |
| solution contact eau (éthanol -30°C) |                          | 105 | 180   | 260 |

Tableau 4 : températures maximum de la cible calculées en °C

#### 1 kW OK. Measurement of thermal resistance

 $T_{fusion}$  Bi= 271



## The irradiation station

- Manual load/unload
- Target on actuator (beam focusing before irradiation)

Tôle de

signa

en position basse,

- Unload using vinyl confinement
- Dosimetry measurements
  - extremity : 480µSv
  - Full body : 20µSv
- Shipment : A type parcel

## Collaboration NPI Under assembly

Lecture du signal Ressorts d'accostage protection Collimateur isolé, avec lecture du Cible de Bismuth sur son support d'AIN incliné à 15° par rapport Bloc de cuivre refroidi par au faisceau eau, actionné verticalement par vérin pneumatique. lci



## Higher power dissipation

#### Feasibility study

- Production via α + Bi
- Collaboration NPI Rez
- □ Goal: ~10 kW
- Rotating target+water cooling

Ø beam (+/-3  $\sigma$ ) =24mm we kept the angle of the target of 15°





## <sup>211</sup>At at NFS: generator

#### Design of a generator using <sup>209</sup>Bi(<sup>6</sup>Li,4n)<sup>211</sup>Rn or <sup>209</sup>Bi(<sup>7</sup>Li,5n)<sup>211</sup>Rn

- Reaction
  - Reaction threshold
    - 28.5 MeV for <sup>209</sup>Bi(<sup>6</sup>Li,4n)
    - 36.13 MeV for <sup>209</sup>Bi(<sup>7</sup>Li,5n)
  - <sup>210</sup>Po contamination
    - E(<sup>6</sup>Li) < 36 MeV for <sup>209</sup>Bi(<sup>6</sup>Li,4n)
    - E(<sup>7</sup>Li) < 48 MeV for <sup>209</sup>Bi(<sup>7</sup>Li,5n)
  - Energy domain of SPIRAL2
- Production estimate:
  - LISE code
  - Lithium beam stopped in target
  - Optimal irradiation time : 14h
  - Best reaction <sup>209</sup>Bi(<sup>7</sup>Li,5n)<sup>211</sup>Rn



| 48 MeV            | 36 MeV            | Rapport activité                 |
|-------------------|-------------------|----------------------------------|
| Act-utile (Bq/μA) | Act-utile (Bq/μA) |                                  |
| <sup>7</sup> Li   | <sup>6</sup> Li   | <sup>7</sup> Li/ <sup>6</sup> Li |
| 4,84E+05          | 1,83E+05          | 2,65                             |



## <sup>211</sup>At at NFS: contaminants

- □ <sup>210</sup>At:
  - $\square \ ^{210}\text{At} \rightarrow ^{210}\text{Po}$
  - One single cross-section measurements in the alpha induced reaction
  - Nothing beyond 48 MeV with Li beam (max cross section at 55 MeV for <sup>7</sup>Li)
- □ <sup>209,210</sup>Po:
  - Direct production in (α,t) or (α,dn) or (α,2np)
  - Incomplete fusion using <sup>7</sup>Li (t transfer followed by n evaporation) (10% of the yield involves α emission in Yb+<sup>7</sup>Li)
- □ α+Pb:
  - PbBi eutectic liquid target. No EXFOR data



Cross section measurements at NFS





Current projects
 At-211
 Other α emitters
 Dosimetry
 Liquid target



## Other $\alpha$ emitters

#### **Bi-213** from Ra-225 or l'Ac-225



Neptunium 237 decay chain

#### **Pb-212** from Ra-224



<sup>1</sup> Thorium 232 decay chain

# Generators from the $\alpha$ + Th-232 reaction



Ra-224

- Database TENDL-2014: Reaction  $\alpha$  + Th-23
- Reaction threshold
  - $\approx$  50 MeV for  $\alpha$  + Th-232
  - $\approx$  100 MeV for  $\alpha$  + U-238
- Production rate calculations :
  - $\square$  Natural thorium target 0.05 cm so that  $E_{out} \approx 50 \text{ MeV}$
  - FISPACT-II vs PHITS : huge differences
  - I=200μA (6.2e14 α/s)
  - □ T<sub>irr</sub>=1d

|                   | MCNPX+FISPACT II          | PHITS         |
|-------------------|---------------------------|---------------|
| <sup>224</sup> Ra | 3.56×10 <sup>8</sup> Bq/g | 5.34×10° Bq/g |

- ⇒ First cross-section measurements to constrain models
- ⇒ Approved experiment





## Ac-225

- Database TENDL-2014: Reaction α + Th-232
- Reaction threshold
  - $\approx$  50 MeV for Ac-225 and Ra-225
  - ≈ 100 MeV for Bi-213
- FISPACT-II calculations:
  - Natural thorium target 0.05 cm so that  $E_{out} \approx 50 \text{ MeV}$
  - I=200μA (6.2e14 α/s)
  - **T**  $T_{irr} = 1$  and 10 d



|                  | 80 MeV   |        |
|------------------|----------|--------|
|                  | A(Bq/g)  | % Atot |
| Irradiation 1j   | 1.24E+08 | 0.39%  |
| Irradiation 10 j | 9.30E+08 | 0.495% |





Current projects
 At-211
 Other α emitters
 Dosimetry

Liquid target



Radioisotope evaluation Dosimetry

Development of a new radiopharmaceutical



Studies /Evaluations clinic /**preclinic** 

#### BIOLOGICAL observable vs. PHYSICAL dose







Current projects
 At-211
 Other α emitters
 Dosimetry

Liquid target



## Liquid target

#### Liquid Bi target

- Design an «as simple as possible» liquid Bi target; not a loop
- Cooled Bi container; confinement issues
- Online and continuous extraction of At or Rn; how to concile with the previous point?...
- Design study in the next years (JRA ERINS; collaboration Czech Rep, ARRONAX, SUBATECH, INFN, HIL; ANR?)



## Conclusions (1)

- SPIRAL-2 beams offer opportunities for R&D on production of innovative radioisotopes
- **GANIL concentrate on target irradiations**  $\rightarrow$  collaborations
- Astate (with ARRONAX, SUBATECH, NPI Rez):
  - Measurements of  $\alpha$  +<sup>209</sup>Bi et +<sup>6,7</sup>Li+<sup>209</sup>Bi at NFS; impurities
  - Irradiation station for Bi under construction
  - Design study for high power (10 kW; solid Bi)
  - Long-term: liquid bismuth target with continuous online extraction of At-211 or Rn-211
  - Safety, transport, autorisation, manpower,...



## Conclusions (2)

- Other alpha emitters : Bi-213, Pb-212:
  - **Production study using**  $\alpha$  + <sup>232</sup>Th. Approved experiment.
  - □ Cross-section measurements ↔ nuclear data interest
- Development of dosimetry studies to evaluate new radioisotopes:
  - Focus on alpha dosimetry (detection methods; in-vitro distribution; effects;...). Very little done
  - Connection physics-radiobiology; interdisciplinary studies; CYCERON



## Conclusions (3)

- □ Implementation:
  - Various possibilities evaluated (from optimal to simple)
  - Requires development (chopper) and safety aspects
- Extremely fruitfull Czech Rep. France collaboration
- Many very interesting opportunities. New in-lab culture...

## THANK YOU