

Dosimetry in preclinical radiotherapy

Anne-Marie Frelin

Introduction

Preclinical investigations in radio-oncology

Reproducibility of experiments

Translation to clinical application

Comparison between experiments/treatments

Relevance of preclinical studies

Improving the relevance and the translation of preclinical results

- Relevance of biological models (cancerous cell lines...)
- Relevance of experimental setups (delivered dose, schedule...)
- Calibration and dosimetry of irradiations
- Details and accuracy of the methods and results description

Small animal radiotherapy Downscaling clinical RT to animal size

Small animal radiotherapy Downscaling clinical RT to animal size

→ Reduction of beams energy

Small animal radiotherapy Preclinical scintillating fiber dosimetry

Material non-equivalence + mm beam size → suitable detector ??? No clinical dosimeter answer all requirements

Energy dependence study with a preclinical irradiator (wide range of energy spectra)

Small animal radiotherapy Energy dependence assessment

from C. Le Deroff PhD Defense 2017

Small animal radiotherapy Small animal *in vivo* dosimetry

→ Implementation of *in vivo* dosimetry in the case of mobile tumor

- Target volume (lung tumor) + millimeter motion
- How to achieve a homogeneous dose distribution ?
 - Implementation of respiratory gating \rightarrow Dosimetry tools needed

$DosiRat \rightarrow dose rate$

EBT3 Film → spatial distribution

- Dynamic phantom
- Synchronized beam shutter

Dosimetry for *in vitro* assessment of Targeted Alpha Therapy (TAT)

- α-particle short range
- High Linear Energy Transfer (LET)
- Hypoxia

- Preclinical evaluation
- Quantification of biological effect

 → Generally administered activity
 → That easy with α-particles ?
- Comparison with other treatments

 → Pb: different irradiation techniques,
 different particles

→ No solution but dose measurement

Dosimetry for *in vitro* assessment of Targeted Alpha Therapy (TAT) **Dosimetry: MIRD Formalism**

D(Gy) =

In radionuclide therapy:

Nb of radionuclide decays in a particular volume × energy emitted per decay × fraction of emitted energy absorbed by a particular (target) mass

S value

depends on the activity distribution, the type of particle, the target geometry...

 A_{S}

 E_0

 $\varphi_{T \leftarrow S}$

Dosimetry for *in vitro* assessment of Targeted Alpha Therapy (TAT) **Dosimetry: MIRD Formalism**

Case of *in vitro* irradiation

2mm of culture medium + vectorized isotopes

D(Gy) =

In radionuclide therapy:

 A_{S} Nb of radionuclide decays in a particular volume \times energy emitted per decay × fraction of emitted energy absorbed by a $\varphi_{T \leftarrow S}$

particular (target) mass

 $D_T = \frac{A_S \cdot E_0 \cdot \varphi_{T \leftarrow S}}{2}$

Max range in water = $90 \, \mu m$ \Rightarrow a small fraction of radionuclides is "seen" by the cells. HOW MUCH ??? \Rightarrow cell thickness ?

 E_0

1) Determining the spatial (and temporal) activity observed by the target 2) Determining the fraction of energy left by radiations in the target

Dosimetry for *in vitro* assessment of Targeted Alpha Therapy (TAT)

Spatial and temporal distribution

Deposited energy (MeV)

Experimental setup:

Deposited energy (MeV)

Dosimetry for *in vitro* assessment of Targeted Alpha Therapy (TAT)

Spatial and temporal distribution

Monte Carlo simulations vs Experimental spectra:

Dosimetry for *in vitro* assessment of Targeted Alpha Therapy (TAT) **Spatial and temporal distribution**

Spatial distribution of isotopes in the medium at different post-injection times

Dosimetry for *in vitro* assessment of Targeted Alpha Therapy (TAT)2) Dose calculation

Almost a factor 2 in biological effect interpretation

Conclusion

Preclinical dosimetry

- Necessary to compare studies/treatment
- Specific
- Conventional methods not always adapted
 - Energy dependence in small animal RT
 - Spatial distribution of radionuclides in *in vitro* assessment
- Requires knowledge and competences in Physics: instrumentation, MC simulation...
- Require close collaboration between different disciplines