

THE NEUTRONS FOR SCIENCE FACILITY AT SPIRAL-2

X. Ledoux and the NFS collaboration

CEA/DAM/DIF, F-91297, Arpajon, France CEA/DSM/IRFU/SPhN, Saclay, France CENBG, Gradignan, France LPC, Caen, France IPHC, Strasbourg, France NPI, Řež, Czech Republic Uppsala University, Uppsala, Sweden KIT, Karlsruhe, Germany GANIL, Caen, France NIPNE, Bucharest, Romania JRC/IRMM, Geel, Belgium CEA/DEN, Cadarache, France IPNO, Orsay, France CIMAP, Caen, France

Physics case

Domains where high energy neutrons play a role

□ Fundamental physics

- Astrophysics
- Production of RIB

Energy production

- New generation of reactor
- Fusion technology
- Accelerator Driven System

Nuclear medicine

- Radioisotopes production for medical applications \rightarrow see G. DeFrance talk
- Neutron therapy
- Biology (cells irradiation..)

Development and characterization of new detectors

□ Study of the single-event upsets

IFMIF : International Fusion Material Irradiation Facility needs neutron and deuteron induced reactions cross-section for flux monitoring and activation evaluation.

- Data scarce or not existing
- Large discrepancies between data base

IFMIF: Tritium production on iron

Material to be studied for IFMIF :

Evaluated data libraries and available experimental data

Al, Fe, Cr, Cu, Nb for cavities and beam transport elements

Be, C, O, N, Na, K, S, Ca, Fe, Cr, Ni for Li loop

GENIV reactors and ADS need nuclear data development (evaluated data and measurements):

- Fast neutron
- Transmutation and target design in ADS
- High burn-up systems.
- Structural materials and coolants

A High Priority Request List (Short list) :

- fission cross sections of ²³⁴U, ²³⁷Np, ^{238,240-242}Pu, ^{241,242m,243}Am, ²⁴²⁻²⁴⁶Cm
- fission nu-bar of ^{238,240}Pu, ²⁴¹Am and ²⁴⁴Cm
- capture of ^{235,238}U, ²³⁷Np, ²³⁸⁻²⁴²Pu, ^{241,242m,243}Am, ²⁴⁴Cm
- inelastic scattering of ²³⁸U, ^{239,240,242}Pu, ^{241,243}Am, C, O, Na, ⁵⁶Fe, Pb, Bi, ⁹⁰Zr
- neutron removal of ¹⁰B, C, O, Na, Si, Fe, Ni, Pb
- elastic scattering of ²³⁸U, C, ¹⁵N, O, ⁵²Cr, ⁵⁶Fe, Pb

Cross sections (fission, capture, scattering) Fission neutron spectra, Nu-bar Gamma source term, Spent fuel inventories, Decay heat, and dose rates

And

- Prompt neutrons and gamma fission spectra
- Delayed neutrons and gamma yield

The neutron yield and energy distribution depend on: The used nuclear reaction The beam energy The beam intensity

Continuous spectrum

40 MeV d+ Be (6 mm)

Quasi-mono-energetic spectrum

p+⁷Li -> n + ⁷Be Q= -1.64 MeV

NFS layout

NFS: The converter room

The TOF area

Installation of several experimental set-ups Along the beam line

Measurement by activation technique

- 1- Irradiation of a sample in the converter room :
 - with neutrons (in air)
 - with ions (in the irradiation station)
- 2- Transfer of the sample to the TOF room for activity measurement

Pneumatic transfer system

- System connected to the irradiation station.
- Sample removal time of irradiation station ≈ 40s
- Sample transfer time < 5 s

The irradiation station

NPI Řež

- For irradiation of samples only by ions
- Vacuum chamber + lock for vacuum samples
- Connection to the sample transfer system
- Integration with the NFS process

Spokesperson : E. Simeckova, NPI, Rez

Measurement of reaction cross-sections by activation technique :

- data for IFMIF facility design
- improvement of reaction model
- Irradiation station + pneumatic transfer system
- proton at 33 and 25 MeV

Goal: measure the ^{58m}Co and ^{58g}Co alimentation

Other short-lived isotopes measured:

- ^{53m}Fe (2.58)
- ⁵³Fe (8.51)
- ^{54m}Co (1.48 min)
- ^{50m}Mn (1.75 min)
- ^{52m}Fe (45.9 s)

• Need of data for fast neutron essentially for minor actinides (ADS, GEN IV reactors)

- Cross-section measurements
- Neutron, gamma multiplicity and spectra
- Fragment yields -> residual heat in the reactors

Study of the fission process

- fission fragment mass and charge distributions
- ff kinetic energy (deformation energy, scission conf)
- neutron multiplicity (deformation energy)
- Need of data below the 2nd chance fission and beyond

• Experimental set-ups

- Fission chambers, active targets
- MEDLEY, FALSTAFF

Advantage of NFS

- High flux
- Energy resolution
- Use of actinide samples

Maximal activity 1 GBq for thin sample 10 GBq for thick target

- 10 experiences submitted to the PAC of 9th and 10th of June 2016 -> 7 accepted
- For the first call :
 - \circ no deuterons beam
 - \circ no burst selector \rightarrow limitation on realizable experiments

	NUM	Title	Spokesperson
Reaction model	E712	Measurement of (n,xn) reaction cross sections on U238	G. Bélier, CEA-DAM
	E721	LIONS - Light-Ion Production Studies with Medley at the NFS facility	A.V. Prokofiev, Uppsala University
Fission	E713	Prompt fission neutron spectra measurement in neutron induced fission reactions	B. Laurent, CEA-DAM
Fusion		Excitation functions of short-lived isotopes in proton induced reactions on ^{nat} Fe	E. Simeckova, NPI, Rez
Radionuclei for medical applications	E717	Measurements of the excitation function for the production of possible candidates for targeted alpha therapy at SPIRAL2	G. de France, Ganil
Astrophysic	E719	Precise direct measurements of the 28 Si(p, γ) 29 P and 29 Si(p, γ) 30 P reaction rates to understand the origin of presolar nova grains	B. Bastin, Ganil
Instrumentation	E720	Measurement of the absolute neutron detection efficiency of FAZIA telescopes	E. Bonnet, Ganil

□ NFS will be a very powerful tool for applied and fundamental physics

- Main characteristics
 - White and quasi-monokinetic spectra in the 1-40 MeV range
 - Neutron beams with high flux and good energy resolution
 - Complementary to the existing n-tof facilities
 - Measurements by activation reactions (n, p, d)
- □ The commissioning will start as soon as the LINAC will deliver beam
- □ Very fruitful collaboration with the NPI Rez for many years:
 - The irradiation station
 - The pneumatic transfer system
 - The study of high power target for ²¹¹At production

Fruitful collaboration

