THE NEUTRONS FOR SCIENCE FACILITY AT SPIRAL-2

X. Ledoux and the NFS collaboration

CEA/DAM/DIF, F-91297, Arpajon, France
CEA/DSM/IRFU/SPhN, Saclay, France
CENBG, Gradignan, France
LPC, Caen, France
IPHC, Strasbourg, France
NPI, Řež, Czech Republic
Uppsala University, Upppsala, Sweden
KIT, Karlsruhe, Germany
GANIL, Caen, France
NIPNE, Bucharest, Romania
JRC/IRMM, Geel, Belgium
CEA/DEN, Cadarache, France
IPNO, Orsay, France
CIMAP, Caen, France
Culham Centre for Fusion Energy, United Kingdom
Physics case

Domains where high energy neutrons play a role

- **Fundamental physics**
 - Astrophysics
 - Production of RIB

- **Energy production**
 - New generation of reactor
 - Fusion technology
 - Accelerator Driven System

- **Nuclear medicine**
 - Radioisotopes production for medical applications → see G. DeFrance talk
 - Neutron therapy
 - Biology (cells irradiation..)

- **Development and characterization of new detectors**

- **Study of the single-event upsets**
Needs for the fusion technology

IFMIF: International Fusion Material Irradiation Facility needs neutron and deuteron induced reactions cross-section for flux monitoring and activation evaluation.

- Data scarce or not existing
- Large discrepancies between data base

Material to be studied for IFMIF:
Al, Fe, Cr, Cu, Nb for cavities and beam transport elements
Be, C, O, N, Na, K, S, Ca, Fe, Cr, Ni for Li loop

Evaluated data libraries and available experimental data
Needs for the new generation of reactor

GENIV reactors and ADS need nuclear data development (evaluated data and measurements):

- Fast neutron
- Transmutation and target design in ADS
- High burn-up systems.
- Structural materials and coolants

Cross sections (fission, capture, scattering)
Fission neutron spectra, Nu-bar
Gamma source term, Spent fuel inventories,
Decay heat, and dose rates

A High Priority Request List (Short list):
- fission cross sections of ^{234}U, ^{237}Np, $^{238,240-242}\text{Pu}$, $^{241,242m,243}\text{Am}$, $^{242-246}\text{Cm}$
- fission nu-bar of $^{238,240}\text{Pu}$, ^{241}Am and ^{244}Cm
- capture of $^{235,238}\text{U}$, ^{237}Np, $^{238-242}\text{Pu}$, $^{241,242m,243}\text{Am}$, ^{244}Cm
- inelastic scattering of ^{238}U, $^{239,240,242}\text{Pu}$, $^{241,243}\text{Am}$, C, O, Na, ^{56}Fe, Pb, Bi, ^{90}Zr
- neutron removal of ^{10}B, C, O, Na, Si, Fe, Ni, Pb
- elastic scattering of ^{238}U, C, ^{15}N, O, ^{52}Cr, ^{56}Fe, Pb

And
- Prompt neutrons and gamma fission spectra
- Delayed neutrons and gamma yield
Neutron beam production

The neutron yield and energy distribution depend on:
- The used nuclear reaction
- The beam energy
- The beam intensity
Neutron spectra provided at NFS

Continuous spectrum

40 MeV d+ Be (6 mm)

Quasi-mono-energetic spectrum

p+^7^Li -> n + ^7^Be Q= -1.64 MeV

Rotating thick converter

30 MeV p + Li

Thin converter
NFS layout

- Beam at 0°
- Collimator ↔ beam quality
- Size (L x l) ≈ (28m x 6m)
 - TOF measurements
 - free flight path

Use of radioactive samples
A< 1 GBq for thin layers
A< 10 GBq for thick samples

- Beam line extension
- Converter
- Magnet and beam dump
- Irradiation station (n, p, d)

Collimator
Converter cave
Neutron beam dump
NFS: The converter room

Li converter

Rotating converter

Pneumatic transfer system

Irradiation station
The TOF area

Installation of several experimental set-ups
Along the beam line

2018
Comparison with other Neutron TOF facilities

- E_n: from 0.1 MeV to 40 MeV
- Good energy resolution
- Reduced γ flash
- Low instantaneous flux

NFS: 40 MeV d + Be
WNR: Los Alamos
n-TOF 2: CERN
n-TOF 1: CERN
GELINA: Geel

Complementary to the existing facilities
Measurement by activation technique

1- Irradiation of a sample in the converter room:
 - with neutrons (in air)
 - with ions (in the irradiation station)

2- Transfer of the sample to the TOF room for activity measurement
 Pneumatic transfer system

 - System connected to the irradiation station.
 - Sample removal time of irradiation station ≈ 40s
 - Sample transfer time < 5 s
The irradiation station

- For irradiation of samples only by ions
- Vacuum chamber + lock for vacuum samples
- Connection to the sample transfer system
- Integration with the NFS process
E714: Excitation functions of short-lived isotopes in proton-induced reactions on natFe

Spokesperson: E. Simeckova, NPI, Rez

Measurement of reaction cross-sections by activation technique:
- data for IFMIF facility design
- improvement of reaction model
- Irradiation station + pneumatic transfer system
- proton at 33 and 25 MeV

Goal: measure the 58mCo and 58gCo alimentation

Other short-lived isotopes measured:
- 53mFe (2.58)
- 53Fe (8.51)
- 54mCo (1.48 min)
- 50mMn (1.75 min)
- 52mFe (45.9 s)
Neutron induced fission

• Need of data for fast neutron essentially for minor actinides (ADS, GEN IV reactors)
 • Cross-section measurements
 • Neutron, gamma multiplicity and spectra
 • Fragment yields -> residual heat in the reactors

• Study of the fission process
 • fission fragment mass and charge distributions
 • ff kinetic energy (deformation energy, scission conf)
 • neutron multiplicity (deformation energy)
 • Need of data below the 2nd chance fission and beyond

• Experimental set-ups
 • Fission chambers, active targets
 • MEDLEY, FALSTAFF

• Advantage of NFS
 • High flux
 • Energy resolution
 • Use of actinide samples

Maximal activity
1 GBq for thin sample
10 GBq for thick target
10 experiences submitted to the PAC of 9th and 10th of June 2016 -> 7 accepted
For the first call :
 - no deuterons beam
 - no burst selector → limitation on realizable experiments

<table>
<thead>
<tr>
<th>NUM</th>
<th>Title</th>
<th>Spokesperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>E712</td>
<td>Measurement of ((n,xn)) reaction cross sections on U238</td>
<td>G. Bélier, CEA-DAM</td>
</tr>
<tr>
<td>E721</td>
<td>LIONS - Light-Ion Production Studies with Medley at the NFS facility</td>
<td>A.V. Prokofiev, Uppsala University</td>
</tr>
<tr>
<td>E713</td>
<td>Prompt fission neutron spectra measurement in neutron induced fission reactions</td>
<td>B. Laurent, CEA-DAM</td>
</tr>
<tr>
<td>E717</td>
<td>Excitation functions of short-lived isotopes in proton induced reactions on (\text{nat})Fe</td>
<td>E. Simeckova, NPI, Rez</td>
</tr>
<tr>
<td>E717</td>
<td>Measurements of the excitation function for the production of possible candidates for targeted alpha therapy at SPIRAL2</td>
<td>G. de France, Ganil</td>
</tr>
<tr>
<td>E719</td>
<td>Precise direct measurements of the (^{28}\text{Si}(p,Y)^{29}\text{P}) and (^{29}\text{Si}(p,Y)^{30}\text{P}) reaction rates to understand the origin of presolar nova grains</td>
<td>B. Bastin, Ganil</td>
</tr>
<tr>
<td>E720</td>
<td>Measurement of the absolute neutron detection efficiency of FAZIA telescopes</td>
<td>E. Bonnet, Ganil</td>
</tr>
</tbody>
</table>
Summary

- NFS will be a very powerful tool for applied and fundamental physics

- Main characteristics
 - White and quasi-monokinetic spectra in the 1-40 MeV range
 - Neutron beams with high flux and good energy resolution
 - Complementary to the existing n-tof facilities
 - Measurements by activation reactions (n, p, d)

- The commissioning will start as soon as the LINAC will deliver beam

- Very fruitful collaboration with the NPI Rez for many years:
 - The irradiation station
 - The pneumatic transfer system
 - The study of high power target for 211At production
Fruitful collaboration