Interaction of Iron pentacarbonyl with multiply charged ions

P. Nag¹, S. Indrajith², P. Rousseau², B. Huber², C. Nicolafrancesco^{2,3}, A. Domaracka², K. Grygoryeva¹, B. Sedmidubská^{1,4}, J. Fedor¹ and J. Kočišek¹

 ¹J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences Dolejškova 3,18223 Prague, Czech Republic
²Normandie Univ., ENSICAEN, UNICAEN, CEA, CNRS, CIMAP, 14000 Caen, France
³Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, B.P. 48, 91192 Gif-sur-Yvette, France
⁴Deptartment of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7,115 19 Prague, Czech Republic

Electron and ion beam induced processes

• Study of electron and ion beam induced dissociation is important from fundamental and application point of view.

 Electron and ion-beam induced deposition – nanofabrication is one of the important applications.

Focused beam nanofabrication

FEBID = focused electron-beam induced deposition (traditional) **FIBID** = focused ion-beam induced deposition (emerging field)

Pyramid connecting four electrode

Clamp to fix nanowires

Reviews: Utke et al., J. Vac. Sci. Technol. 2008, Thorman et al., Beilstein J. Nanotechnol. 2015

Role of secondary low-energy electrons

Precursor Molecules

Electron – induced chemistry in Fe(CO)₅ (gas phase)

• Electron impact ionization – very fragmentative

Dissociative electron attachment

- Very low electron energies (< 1 eV)
- Cleaves only one metal-ligand bond
- Very high cross sections

Co(CO)₃NO S. Engmann et al., ACIE 2011

Pt(PF₃)₄ O. May et al., PCCP 2012

Back-draws of FEBID

Problems of FEBID:

- Spatial resolution much worse than it could be Deposits – few beam diameters wide – low energy secondary electrons
- Purity of the deposits Metal content typically 15 to 75 % (incomplete dissociation of precursor)

Alternative – use of focused ion beam

30 keV Gallium Ion Beam 1 keV electron Beam 30 keV Helium Ion Beam

Alkemade and Miro, Appl. Phys. A (2014)

- Focused ion beam induced deposition is becoming an important tool.
- Spread of secondary electrons interacting with precursor molecule is low.

COLIMACON TOF mass spectrometer

- detection of high mass fragments (clusters)
- coincident detection of fragments
- metastable ion detection

ARIBE low energy ion beamline at GANIL facility in CAEN, Fr

Current study

Multiple charge: 16 keV ⁴He²⁺, 40 keV ²⁰Ne⁴⁺ 21 keV ⁴⁰Ar³⁺ 12 keV ⁸⁴Kr³⁺ 255 keV ⁸⁴Kr¹⁷⁺

Fragmentation can happen via different processes – depending on ion velocity, mass ratio and charge state

- Ion can interact with electronic cloud of the molecule
 - Electron excitation and electron capture
- Ion can interact with molecular nuclei
 - Vibrational excitation Sufficient for emission of a nucleus

Interaction with singly charged ions

NFor With precipertilien eterchrololi 6 excitation viend and ethomeraphigener domerigy antaprofeess both electrobicaptome and gyuis 24r5 exettation plays a role

Ar⁺ is dominated by nuclear excitation

Interaction with multiply charged ions

Electron capture at larger inter-nuclear distance – low energy transfer – more intact molecule

Fragmentation efficiency

Number of Fe atoms per CO group

Maximum kinetic energy of the fragment ions

Conclusion

- The kinetic energy of fragments almost independent of the ion energy rather depends largely on the precursor molecule – Proper selection of precursor molecule is important
- Fe(CO)₅ is a potential precursor molecule to have less spatial spread due to low fragment kinetic energy.
- Singly charged ²⁰Ne⁺ ion beam is best projectile to produce purest metal deposition.

Decomposition of Iron Pentacarbonyl Induced by Singly and Multiply Charged Ions and Implications for Focused Ion Beam-Induced Deposition

Suvasthika Indrajith,[†] Patrick Rousseau,[†] Bernd A. Huber,[†] Chiara Nicolafrancesco,^{†,‡} Alicja Domaracka,^{*,†} Kateryna Grygoryeva,[§] Pamir Nag,[§] Barbora Sedmidubská,^{§,||} Juraj Fedor,[§] and Jaroslav Kočišek^{*,§}®

Acknowledgement

Thank You

Metastable ion decay

