Selected physics highlights obtained at GANIL (O. Sorlin - GANIL)

184

126

120

14

Breaking of mirror symetry in atomic nuclei & astrophysical implications Study of ³⁶Ca from ³⁷Ca(p,d)³⁶Ca

Study of giant resonances in atomic nuclei to study the nuclear matter incompressibility Study of ⁶⁸Ni.

50

Protons (Z)

³⁶Ca

20

20

Neutrons (N) 2nd French-Czech « Barrande » Nuclear Research Workshop

82

⁶⁸Ni

50

126

Produce a secondary beam of ³⁷Ca (about 4000 pps)

Mirror my beautiful mirror: tell me how does ³⁶Ca look like ? (knowing the structure of ³⁶S...)

 $\begin{array}{c}
1^{+} \\
0^{+} \\
2^{+} \\
0^{+} \\
0^{+} \\
3290 \\
2^{+} \\
0^{-} \\
0^{-} \\
36 \\
0^{+} \\
0^{-} \\
0^{-} \\
36 \\
0^{+} \\
0^{+} \\
0^{-} \\
0^{+} \\
36 \\
0^{+} \\
0^{+} \\
0^{-} \\
0^{+} \\
0^{+} \\
36 \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
36 \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
36 \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
36 \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+} \\
0^{+$

If mirror symmetry preserved

³⁶Ca is very weakly bound

All excited states are unbound states (open quantum systems)

-> excited states can be shifted in energy
-> they acquire a width (short lifetime)
-> they can decay by p or γ emission

Produce them using a transfer (p,d) reaction

Drift chamber (X,Y) - 7 cm size Ionization chamber ΔE – 5 cm size Digital electronics

HI residues

Drift chamber (X,Y) - 7 cm size Ionization chamber $\Delta E - 5$ cm size Digital electronics

HI residues

Drift chamber (X,Y) - 7 cm size Ionization chamber $\Delta E - 5$ cm size Digital electronics

HI residues

0+

³⁶Ca

STS M

MUST2 telescopes for charge particle detection

Broken mirror symmetry between ³⁶S and ³⁶Ca

If mirror symmetry preserved

Experiment-> Mirror symmetry broken

0⁺ predicted to be shifted by 600 keV !

When shell structure meets nuclear astrophysics

When shell structure meets nuclear astrophysics

Some (unknown) reaction rates infleunce more the light curve.

Energy of the resonant state in ³⁶Ca and decay widths must be studied

Search for compression modes in ⁶⁸Ni

Giant resonances in atomic nuclei & the nuclear matter incompressibility Study of ⁶⁸Ni.

Excite the collective motion of neutrons and protons using (α, α') scattering

Use of an active target (MAYA)

- -> Detect α particles of very small energy with high efficiency
- -> Reconstruct the vertex of the reaction
- -> Energy and angular distrib. of the resonances
- -> Search for compression modes

Predictions of the monopole strength with increasing N

According to predictions, the compression of neutrons and protons in phase occurs at large E

With increasing neutron excess, a soft compression mode develops at low energy

In this mode, only neutrons oscillate !

The study of such modes is essential to model the equation of state of nuclear matter in neutron-rich environments, such as core-collapse supernovae or / and neutron stars

Experimental result for ⁶⁸Ni

Results show for the first time a giant compression mode at 22 MeV in a neutron-rich nucleus and a soft mode at 13 MeV

Conclusions / perspectives

As the statistics was rather poor, the energy resolution not very good, and the angular coverage limited for very low angles, the experiment will be repeated soon with ACTAR-TPC

You will see the detector while visting GANIL $\ensuremath{\textcircled{}}$

The centroid of the giant monopole mode is suprisingly higher than calculated

Its energy does not follow the decreasing trend from existing experimental data

Backup slides

Cryogenic liquid hydrogen target

Future campaigns to be discussed@ LISE meeting Feb 2019

2020

- Experiments with ACTAR standalone (e.g. 2p decay of ⁴⁸Ni or ⁵⁴Zn)
- Campaign combining study of soft and giant modes in exotic nuclei ('brochette')
- Others

2021 and after

Transfer experiments (MUST2 / GRIT) in combination with ACTAR - TPC ?
e.g. perform (d,³He) and (p,d) or (p,t) reactions in the same experiment
Use of cryogenic targets H, ³He...
Benefit from new SPIRAL 1 beams

CS GANIL Jan 2019

