

Nuclear Physics Institute of the CAS Department of radiopharmaceuticals

Ondřej Lebeda

Challenges in medical radionuclides production

French-Czech "Barrande" Nuclear Research Workshop, Honfleur 25th–26th April 2019

Functional diagnostics

Compounds with γ (SPECT) or β^+ (PET) emitters

Ca 90 % of all radiopharmaceuticals

Combination with CT, MR (anatomy)

Targeted Radionuclide Therapy

An α -particle inducing DNA double strand breaks

Compounds with β^- and α emitters

Accompanying $\gamma\text{-rays}$ are desirable in order to follow biodistribution of the radionuclide

Targeted therapy of malignant diseases and therapy of chronic joint inflammation (radiosynovectomy)

Medical radionuclides

Review of selected challenges

- Production of some theranostic radionuclides (therapeutic radionuclides that emit radiation suitable for imaging) – ⁴⁷Sc, ⁶⁷Cu
- Production of long-lived parent radionuclides for generators of the short-lived positron emitters – ⁴⁴Ti/⁴⁴Sc, ⁶⁸Ge/⁶⁸Ga
- Production of novel alpha emitters for targeted therapy of cancer – ²²⁵Ac

Some of the selected challenges

RN	T _½	decay mode	γ-lines (keV)	production via
⁴⁴ Ti	59.1 a	EC (100 %)	78.3234 (94.4 %)	⁴⁵ Sc(p,2n)
⁴⁷ Sc	3.3492 d	β ⁻ (100 %)	159.38 (68.3 %)	⁴⁸ Ti(p,2p) ⁵⁰ Ti(p,α)
⁶⁷ Cu	61.83 h	β ⁻ (100 %)	93.31 (16.10 %)	⁶⁴ Ni(α,p)
			184.58 (48.7 %)	⁶⁸ Zn(p,2p)
				⁷⁰ Zn(p,α)
⁶⁸ Ga	67.629 min	β ⁺ (89.1 %)	1077.35 (3.0 %)	⁶⁹ Ga(p,2n) ⁶⁸ Ge
				⁶⁸ Ge(270.8 d)→ ⁶⁸ Ga
²¹¹ At	7.214 h	α (41.80 %)	Po X-rays	²⁰⁹ Bi(α,2n)
²²⁵ Ac	10.0 d	α cascade	440.45 (25.9 %)	²²⁹ Th decay
				²²⁶ Ra(p,2n) ²²⁵ Ac

External targets – perpendicular, slanted, rotating

All the external solid targets may easily combine water-cooling from the backside and helium-cooling of the target surface exposed to the incident beam. Slanting the target distributes the heat power over the larger area and reduces its thickness.

A detailed analysis of the most challenging task

Production of ²²⁵Ac via ²²⁶Ra(p,2n) reaction

Motivation: Prostate cancer therapy

Prostate carcinoma is the second most frequent cause of death in men suffering from cancer in Europe and its incidence increases.

GOOD DIAGNOSTICS

[⁶⁸Ga]PSMA or [¹⁸F]PSMA – molecules that provide the best imaging option of metastatic disease stages and therapy response. Patient before and after therapy [²²⁵Ac]PSMA – DKfZ Heidelberg

EFFICIENT THERAPY

[²²⁵Ac]PSMA – molecule that seems to be promising for some patients in terminal stadium of the disease

A single molecule for imaging & therapy

a) PSMA-617

b) PSMS-11

Excitation function

Obviously, experimental data are scarce, slightly shifted towards higher energies and in a fair agreement with the prediction of the TALYS nuclear reaction model code. A new, detailed measurement is highly desirable.

Yield

The $^{225}\mbox{Ac}$ EOB activity for 1 d irradiation with 50 $\mu\mbox{A}$ beam

E _{in} (MeV)	E _{out} (MeV)	Y _{sat} (MBq/μA)	A _{EOB} (GBq)
20.0	10.0	4 558	15.4
17.0	12.0	3 088	10.4
16.0	14.0	1 475	4.98
15.5	14.5	759.6	2.56

Isotopic impurity – ²²⁶Ac ($T_{\frac{1}{2}}$ = 29.4 h, β^- +EC resulting in ²²⁶Th decay chain)

No experimental data are available, we may work only with the predictions.

Yield of ²²⁶Ac

The $^{226}\mbox{Ac}$ EOB activity for 1 d irradiation with 50 $\mu\mbox{A}$ beam

E _{in} (MeV)	E _{out} (MeV)	Y _{sat} (MBq/μA)	A _{EOB} (GBq)
20.0	10.0	371.5	8.03
17.0	12.0	179.3	3.88
16.0	14.0	77.8	1.68
15.5	16.5	39.0	0.843

The ²²⁶Ac/²²⁵Ac activity ratio in time

The data were calculated for the 1 d irradiation and the beam energy loss $15.5 \rightarrow 14.5$ MeV

Targetry, QC, recycling

- Radium metal is rather reactive and unstable on the air. Its production routes are demanding. Radium chemistry was studied until 1940, since that time almost no further knowledge was gained.
- The target material of choice is probably radium chloride, RaCl₂. This will result in certain decrease of the yield, however not dramatic. Moreover, this may decrease the maximum applicable beam current on such a target due to lower thermal conductivity. Actually, thermal conductivity of the metal itself is anyhow low, only 18.6 W m⁻¹ K⁻¹.
- Applying the target layer is to be solved. Uniformity of the target layer should be checked by e.g. autoradiography.
- Vacuum-tight encapsulation is inevitable. It should provide good heat exchange between the encapsulation material and the target itself.
- Cooling: 4π water cooling, He/water cooling?
- Recycling the Ra metal seems to be easily feasible.
- The process should be fully automated.

The biggest challenge – ²²²Rn and long-lived active deposit management

The target layer should be minimized not only due to the target material radioactivity, but mainly due to the continuous emanation of relatively long-lived radon isotope ²²²Rn ($T_{\frac{1}{2}}$ = 3.8235 d, t_b = -61.7 °C, t_m = -71 °C). Its decay chain unfortunately produces long-lived active deposit started from ²¹⁰Pb ($T_{\frac{1}{2}}$ = 22.6 a).

The pressure due to 222 Rn in equilibrium with 226 Ra is negligible, as well as the amount of the helium due to the emitted α particles – it won't increase the target inner pressure. Major issue is the Rn release, whenever the Ra is exposed to open atmosphere.

A possible solution: 4π water-cooled target

An encapsulated target should:

- be vacuum tight
- be welded under vacuum
- provide good contact between the target material and the foils

The target layer required to degrade 15.5 MeV beam to 14.5 MeV is 0.138 mm for Ra metal. It corresponds to ca 38 mg of ²²⁶Ra for 8 mm diameter target. Due to the radiation safety, limiting the irradiated ²²⁶Ra amount to 50 mg is reasonable.

TR-24 cyclotron

