

énergie (MeV/A)

A glimpse of the beauty of femtoscience from the microscopes @ GANIL A. Navin

Grand Accélérateur National d'Ions Lourds, Caen, France

Explorations physics at the infinitely small

to understanding physics of the infinitely large

Very select examples

Discovery potential

GANIL-Czech Republic a strong connection LIA NuAG, SPIRAL2-CZ

State of art Technology: From basic sciences to applications

GANIL-a bird's eye view

Radiochemistry Material Science

Modern Alchemists are not anymore chemists

but Nuclear Physicists Extending Mendeleev's Periodic table of *ELEMENTS*

are their properties different ?

Different Tools to address different important questions in a precise manner

Nuclear equation of state

The nuclear symmetry energy determines the energy cost in changing neutrons into protons and vice versa. As such, the symmetry energy — and in particular its density dependence — impacts the dynamics of neutron-rich matter.

Despite a mismatch in length scales of 18 orders of magnitude, the slope of the symmetry energy at saturation density controls both the thickness of the neutron skin and he radius of a neutron star.

Nuclear Camera

 $E_{7H} = 0.73^{+0.58}_{-0.47} \text{ MeV}$ $\Gamma_{7H} = 0.18^{+0.47}_{-0.16} \text{ MeV}$

DWBA+AMD calculation (scaled, preliminary)

Production of Superheavy Hydrogen (⁷H compared to triton) Using ⁸He beams which live only for 120 milliseconds

Above-barrier narrow resonances in ¹⁵F

Seen in 2018 run by 1H(14O,p) resonant elastic reaction

Hinted in 2018 measurement

<u>DNA fingerprinting of the nucleus</u> <u>Under new conditions Fast rotating exotoic nculei</u>

50 100 150 200

AGATA, VAMOS++ EXOGAM,...... @ GANIL: Today and tomorrow and beyond

Prompt spectrocopy, Prompt-Delayed spectroscopy in the time range of 100 ns - 200 µs lifetime measurements from fs to few ns and 100 ns to 200 ms E. Clément et al., NIMA 855, 1-12 (2017) Ionization Drift Chamber Chamber Y-H. Kim et al, EPJA, 465, 430 (2017) MWPC Internet and a lotter Scaled X0.5 AGATA (Prompt y-ray (y_)) DPS-MWPC-Wien XOGAN Filter Quadrupoles target Dipole 200 -300 -250 -200 -150 -100 -50 0 X [mm] Focal plane detectors (Z,A, q identification delayed y-ray (

cs detectors And m

A Quest for High Intensity

Latest news

Ready to go

Waiting for Safety clearance for the LAST STEP (ASN to the college planned for 14th May 2019) French Nuclear authorities for putting RF into the cavities July 2019 and first proton beams beginning 2020

Pure and applied reserach

- Continuous and quasi-mono-energetic beam
- Flight path from 5 to 30 m
 High flux of fast neutrons

High precision techniques

Discovery potential and GANIL continues to grow and provide newer opportunities (with you)

Making a GANIL an international lab with scientific partners and to boldly go no man/woman has gone before

We are looking forward for the Czech Republic to be a partner in this endavor

Děkuji Thank you Merci

