

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Laboratory Of Fast Neutron Generators At NPI Řež

GROUP MEMBERS:

M.ANSORGE, P. BÉM, D. HLADÍK, M. MAJERLE, J. NOVÁK, E. ŠIMEČKOVÁ, M. ŠTEFANIK

Introduction

- Nuclear Physics Institute, The Czech Academy of Sciences
- •Fast neutrons 1 35 MeV
- •Focused on the experimental validation of the neutron crosssection libraries for the materials used in the future thermonuclear technologies (IFMIF-DONES, ITER)
- •FNG in operation, Commissioning of the new FNG units
- •Fast neutron detecor systems

Thick BeThin Li targettarget stationstation

FNG – neutron field characteristics

Continuous neutron spectrum

- Protons+8mm Be
- Continuous spectrum up to 35 MeV
- Max. flux: ~10¹¹ n/cm²/s

Quasi-monoenergetic neutrons

- Protons+2 mm Li backed with Graphite beam stopper
- Monoenergetic peak width 2 MeV
- Energy range: 17-35 MeV
- Max. flux in peak: ~10⁹ n/cm²/s 32.5 MeV

New thin-Be FNG driven by U-120M cyclotron, collimated beams

- •Quasi-monoenergetic source of fast neutrons: 0.5 – 2.5 mm of target thickness
- •Placed very close to collimator to gain higher fluxes
- •Low target thickness->narrow monoenergetic peak->better cross section evaluations for specific neutron energies, but lower statistics
- First test was successfully conducted last week

New thin-Be FNG driven by U-120M cyclotron, collimated beams

2.5 mm Be foil backed with Graphite beam stoper, cooled with

Neutron Energy Spectrum at 2.5m distance on collimated beam p+2.5 mm ⁹Be $E_{proton} = 33 MeV$

demi-water.

MARTIN ANSORGE NPI - FRENCH-CZECH « BARRANDE» NUCLEAR RESEARCH WORKSHOP 2019

High-flux fast neutron generator at TR-24

- Max. beam currents up to 0.3 mA
- Protons 24 MeV
- Up to 7,2 kW on the fixed target
- Water-based cooling systems under development
- Neutron production: p+Be(Thick)
- integral flux expected: 5x10¹² n/sr/s
- Not operational yet

Time-of-Flight measurements

•Scintilator NE-213

- •Scintillator data acq with CAEN V1751 digitizer: 1GHz sampling rate, 10 bits resolution
- •Simultaneous sampling of the anode signal from the scintillation probe and the cyclotron accelerating frequency (RF)
- •No need for initial knowledge of detector response function (its measured directly) or initial gues of final spectrum

Neutron Spectra measurements – Activation analysis

•Suitable for compact geometries

- •No dead time in presence of intense neutron fields
- •Unfolding with SAND-II code based on neutron CS data from EAF-2010, initial spectra guess with MCNPX simulation (with ENDF/B –VII and LA -150h data)
- •Large set of activation materials (Al, Nb, Ni, Y,Co, Ti, Fe, In, Lu,Au, and Bi)) allows to measure spectrum across wide range of neutron energies

Delayed neutrons measurements

 Acurate knowledge of delayed netrons at ADS needed - ²³²Th, ²³⁸U

•Array of BF₃ detectors in polyethylen matrix, proof of concept setup

•Cyclotron beam modulation controlled by arduino module.

oIn April 2017 experiment with 50g ^{nat}U was performed, QM neutrons 21 MeV.

•Delayed neutron curve is measured and fitted to 6 energy groups.

Neutron beam collimator!

Total neutron CS measurements with liquid oxygen

- Data important for ADS setups of future nuclear reactors
- Direct transport measurements of total neutron crosssection with Quasi-monoenergetic colimated beams
- TOF neutron spectrum with/without box filled with liquid O2
- Decrease of peak in QM neutron spectrum is measured
- (n,tot) cross-section is calculated based on the transmission
- Final results to be presented at ND2019 Bejiing

NPI Chamber for Light Ion Detection – "CLID device"

- Inspired by MEDLEY setup, now at Ganil/Spiral2- NFS
- Measurements of double-differential cross sections for reactions (n, cp)
- Reactions induced by collimated fast neutron beams (18-35 MeV) from new FNG (0.5 mm thin Be) driven by U-120M
- Chamber still under construction, but almost ready for operation, first test expected later this year (2019)
- Equiped with dE-E Si telescopes
- Central ladder with 3 sample positions
- Fully remote controled

HPGe promt γ-spectrometer on collimated neutron beams

Neutron induced reactions $(n,x\gamma)$ an collimated beams

Consists of 4-piece array of HPGe with 25% of relative efectivity

Placed around colimated beam of fast neutrons from U-120M

Cyclotron duty cycle already useful for ms isotopes – eg.²⁰⁹Bi(n,2n)^{208m}Bi, important in PbBi

System in final stage of construction, should be operational lately in 2019

GELINA, IRMM, Belgium

Neutron radiation damage measurements

Fundamental data needed for materials exposed to high neutron fluxes at future fusion related facilities.

Integral neutron flux of 10^{16} n/cm² is sufficient for the reliable PALS measurements: tens of hours at the current FNG p+Be source

Direct DPA measurements with Positron Anihilation Spectrometry (PALS)

Cryostatic system to reduce thermal recombination during irradiation/transport/PALS is in construction

Could be done at NFS: 50 hours on d+Be (position on the target station), 10x more time in p+Li: in parallel with other experiments

IAEA launched coordinated research project on this topic https://wwwnds.iaea.org/CRPdpa/

source-sample sandwich

Initial defects in a metal: TEM (scanning transmission electron microscopy)

Olga Ograddhikova et al., 05-10 November 2017, ICERWH18, Aonazi, Japan

4/26/2019

Summary

•Three FNG controled by U-120M are in operation, two of them where used very often i last decade

oThick Be driven by TR-24 is still in proces of commissioning

oFundamental Nuclear research oriented to fusion

• Evacuated chamber for (n,cp) reaction measurement (first experiments hopefully later this year 2019)

•HPGe array for prompt (n,gx) and delayed gamma (milisecond isotopes) measurements (2019/2020)

•Continue research in the fusion framework

 New TR-24 cyclotron, 300 mA proton beam, construction of neutron converter (2018), Material damage with PALS (EUROFUSION from 2019), subcritical systems

•We are looking for new employees, postdocs, students...

oVisit http://www.ujf.cas.cz or email on ansorge@ujf.cas.cz

Thank You for Your Attention