

ÚJV Řež, a. s.

Project ALLEGRO V4G4

French – CZ/SK/HU/PL Collaboration

Ladislav Bělovský et al.

ladislav.belovsky@ujv.cz

using information with courtesy of CEA

2nd French-Czech «Barrande» Nuclear Research Workshop, Honfleur, France, April 24-26, 2019

- Gas-cooled Fast Reactors Main features & Past GFR Projects
- Philosophy by CEA of a Demonstration unit ALLEGRO
- ALLEGRO 2009 Project of CEA
- ALLEGRO V4G4 Project of "V4G4 Centre of Excellence"
- R & D for ALLEGRO
- Perspectives & Conclusions

Gas-cooled Fast Reactors (GFR) – Motivation & Concepts

Helium in Fast reactors: Yet never built alternative to liquid metals

- Advantages:
 - Transparent for neutrons, inert (no corrosion, no activation),
 - Easy in-service inspection & coolant decommission
 - For temperatures >700 °C
- Disadvantages:
 - High pumping power & coolant velocity & pressure
 - Difficult decay heat removal in accidents

Past & Recent GFR conceptual designs

- >1960: Based on MOX/SS (or TRISO), PCRV, max. ~550 °C
 - 1962-1980: General Atomics (GA) 367 MWe, He
 - 1968-1978: European GBR1 to GBR4, ~1000-1200 MWe, He, CO2
 - ~1980 Soviet design, ~1000 MWe, >16 MPa N2O4, U/UO2 in Cr matrix
- >2000: Refractory fuel (SiC tubes or plates) & steel RV & Guard vessel, max. 800-850 °C
 - CEA GFR2400 (~1140 MWe), mixed-carbide fuel, 7 MPa He
 - GA EM2 (~265 MWe SMR), uranium-carbide fuel, 13 MPa He

Example: General Atomics GCFR concept 367 MWe

- He 10.5 MPa
- Tin/out = 298/524 °C
- 3 loops with blowers (3 * 10.6 MW)

Example: General Atomics GFR concept EM2, 500 MWt, 265 MWe

Example: CEA GFR concept 2400 MWt, 1140 MWe (1)

CEA GFR 2400 MWt: Reference combined cycle (2)

- 1. Direct cycle, Tin = 480°C: η ~ 47.5 %
- 2. Indirect cycle, Tin = 480° C: $\eta \sim [45.5 45.6] \%$
- 3. Direct cycle, Tin = 400°C: $\eta \sim 44.8 \%$
- 4. Indirect combined cycle, Tin = 400°C: $\eta \sim [44.4 44.7]\%$

5. Indirect cycle, Tin = 400° C: $\eta \sim [42.4 - 42.8]\%$

>2000: Solution for Decay Heat Removal (DHR) from a GFR core

HTR (~5 MWt/m³) "conduction cool-down" will not work in a 100 MWt/m³ GFR

 High power density, low thermal inertia, poor conduction path and small surface area of the core conspire to prevent conduction cooling.

A convective flow is required through the core <u>at all times;</u>

- At pressure: Natural convection flow is OK (establishes easily)
- After depressurization (Guard vessel intact): Forced flow is OK (when active systems available)
 - DHR blower pumping power very large at low P

Natural (passive) cooling is OK only, if the gas density (pressure in GV) is high enough (~1 MPa).

ALLEGRO: Concept by CEA of a first ever GFR demonstrator

To establish confidence in the GFR technology with the following objectives:

- A) To demonstrate the viability in pilot scale & qualify specific GFR technologies such as:
 - Core behavior & control including fuel
 - Safety systems (decay heat removal, ...)
 - Gas reactor technologies (He purification, refueling machine ...)
 - Integration of the individual features into a representative system
- **B)** To contribute (by Fast flux irradiation) to the <u>development of future fuels</u> (innovative or heavily loaded in Minor Actinides)
- C) To provide test capacity for high-temp components or heat processes
- D) To dispose of a first validated Safety reference Framework
- Power conversion system is currently not required in ALLEGRO.

Philosophy by CEA for the ALLEGRO core design

- Three distinct phases of operation ⇒ three different core configurations:
- STARTING MOX (or UOX) CORE
 - Oxide fuel in SS (MOX ~25% Pu) Phenix-based hex. Fuel Assemblies
 - Core outlet temperature limited to ~530 °C

Oxide / SS fuel has small safety margin

- INTERMEDIATE CORE (containing 1 to 6 refractory FAs)
 - Exp. refractory FAs: (U,Pu) carbide pellets in SiCf-SiC pins (29-35% Pu) inside thermally insulated metallic hex. wrapper tube.
 - Outlet temperature: Test assembly ~800-850 °C (reduced flow rate at FA inlet)

Average core ~530 °C

FINAL REFRACTORY CORE

Average core outlet temperature increased to ~800-850 °C

Refractory fuel needs R&D

 Remark: ALLEGRO <u>must be designed</u> for the high-temperature option (incl. low-to-high T upgrade procedure of certain technologies)

ALLEGRO CEA concepts to be continued in Central Europe

2002-2010: CEA - Development of GFR2400 & ALLEGRO 50-75 MWt

■ 2010-2025: CZ-HU-SK- PL- Preparatory phase of ALLEGRO:

- 05/2010: MoU: Prepare documents (pre-conceptual design) for decision makers (ALLEGRO Yes/No)
- 08/2013: "V4G4 Centre of Excellence" Association (legal entity) founded in SK

 VUJE Trnava (SK): ÚJV Řež (CZ): 	Responsible for Design & Safety (with ÚJV) Helium technology, R&D and Experimental support	Industry
 MTAEK Budapest (HU): NCB I Swierk (PL): 	Fuel & Core Materials (2)	Research
 Associated members: 	CEA (FR) 2017, CV Rez (CZ) 2018	

ALLEGRO Preparatory phase by V4G4 CoE:

- Pre-conceptual Design: Revision of ALLEGRO CEA 2009 → New ALLEGRO V4G4 concept (2020-25)
- Safety: Core coolability (passive mode)
- R&D and Exp. support: Under formulation (helium technologies underway)

ETDR CEA 2008 (50 MWt) – Design of I. circuit

Main parameters	Value
Core outlet T	260 / 560 °C (driver core), 480 / 828 °C (refract. core)
Primary coolant	Helium 7 MPa
Secondary circuit	Water 6.5 MPa

Note: I. circuit is enclosed in a close containment (guard vessel)

15

not shown here

Main HX (gas/water) (similar to IHX in JAEA HTTR)

ETDR CEA 2008 (50 MWt) – Thermal scheme

ETDR CEA 2008 (50 MWt) – Global view

ALLEGRO CEA 2009 (75 MWt) – Design of I. circuit

ALLEGRO CEA 2009 – Safety: Example of a station blackout

ALLEGRO CEA 2009 – RPV internals

• A) Driver core

- **Fuel**: MOX in 15-15Ti steel
- **Reflector**: 15-15Ti **steel**
- Shielding:
- B₄C in stainless steel
- B) Refractory core
 - Fuel: (U,Pu)C in SiC_f / SiC
 - Reflector: ZrC
 - Shielding:
- B₄C in stainless steel
- Common structures
 - Shielding blocks: Steel
 - Barrel: Steel

ALLEGRO CEA 2009 – Design of Guard Vessel (GV)

- Normal operation: Nitrogen+He (leakages), ~1 bar
- Accident (LOCA): Nitrogen+He, backpressure: ~3-4 bar
 - + N₂ injection: 10 bar or more

Purpose of GV:

- Improve core coolability in LOCA
- Provide gas backpressure >1 bar
- <u>Forced</u> convection: Reduce pumping work
- <u>Natural</u> convection: Improve gas circulation

Note:

Internal concrete support structures are not shown

ALLEGRO V4G4: Restart of development in 2013-2015

YLU.

ALLEGRO CEA 2009: Status

- Design: Mainly fuel & I. circuit (Neutronics & fuel in detail)
- Fuel: MOX (small compact core)
- Safety: Core coolability by using active systems mainly
- Auxiliary systems addressed marginally

ALLEGRO V4G4 Goal: Make it feasible & safe

- Design: To be closer to GFR 2400

 Gas in the II. circuit (possibly including turbomachinery)
- Safety: Core to be coolable using (semi)passive systems
- Fuel: UOX fuel (<20% U235) instead of MOX (feasible ?)</p>
 - Option for easier operation and diversification of suppliers
- Technology also in focus (He-related technology, ...)

ALLEGRO CEA 2009 – Design of DHR HX

ALLEGRO CEA 2009 – DHR check valves & Main isolation valves

ALLEGRO V4G4: Pre-conceptual design proces (1)

ALLEGRO V4G4: Pre-conceptual design proces (2)

ALLEGRO V4G4: Design work underway focused on safety (1)

Guard vessel (feasibility study)

- Goal: Design pressure ~1.5 MPa (driving force for natural convection)
- Study: Pre-stressed concrete with steel liner
- Complication: Openings to access the interior

- Decay heat removal (DHR) system (optimization of design)
 - Goal: Minimize He flow resistance, when DHR blower is stopped (in natural convection mode)

ALLEGRO V4G4: Design work underway focused on safety (2)

Passive disc check valve (inside DHR loop, optimization work)

- Goal: Verify experimentally its functionality
 Optimize its design
- Closed during reactor operation
- Opens passively during shut down / accident

DHR heat exchanger (new design)

- Goal: Minimize flow instabilities on water side in passive mode (straight tubes instead U-tubes) (-> water upwards, He downwards)
 - Minimize He flow resistance in passive mode

Note: Passive mode = natural convection

ALLEGRO V4G4: Design work underway focused on safety (3)

■ Core catcher (→ new pre-conceptual design)

- **Goal:** Mitigate severe accident consequences
- CEA 2009: Approximate idea only
- V4G4: To develop a new design

Exp. Helium loop S-ALLEGRO: Coaxial cross valve for DHR loop (optimization)

Goal: - Reliably switch the He flow inside the DHR coaxial piping

ALLEGRO V4G4 (MOX core 75 MWt): Core coolability solved (?) Small break loss-of coolant accident in passive mode

ALLEGRO V4G4 (MOX core 75 MWt): Core coolability solved (?) Large break loss-of coolant accident in passive mode

LB-LOCA – Large Break Loss of Coolant Accident SBO – Station Blackout

R & D for ALLEGRO at CEA (2002-2009)

R & D on pin carbide fuel with SiC_f-SiC clad: Reserved to CEA

GFR fuel R&D remains long-term perspective

- (U,Pu)C swelling
- Metallic liner for leak tightness
- End plugs (hermetic sealing)
- Buffer bond (thermochemical compatibility)

CEA: Development of the refractory fuel is in waiting mode for this moment.

P. David & G. Rochais (CEA/DMAT)

R & D needs in support to ALLEGRO

- Safety of oxide cores (MOX or UO2)
 - System thermohydraulics (core coolability), Guard Vessel (& core catcher) issues
- Helium technology
 - He quality management, recovery, tightness, components (valves, HXs)
 - Subassembly TH, Insulation, fuel handling, instrumentation, ...
- Computer codes:
 - Benchmark activities: ERANOS, MCNP, SERPENT, KIKO, HELIOS, SCALE,
 - CATHARE2, RELAP5, MELCOR 2.1
- Materials qualification
 - Composite Matrix Ceramic clad, Metallic clad for oxide core
 - Control rods & elements, S/A structural materials
 - Thermal barriers, Other structures (core catcher, structural materials)
- Fuel qualification
 - Oxide fuel, Carbide fuel

R & D for ALLEGRO: Main priorities after 2015 (1)

- Exp. validation of the DHR approach
 - Natural circulation He loop STU, Trnava (SK) Commissioned in 2016
 - He-loop S-ALLEGRO (I. phase), CV Rez (CZ) Commissioned 2017, in use ~2019
- Guard vessel resistant to elevated pressure (> 1 MPa)
 - Key structure to promote natural circulation in accident conditions
 - Feasibility of such a large structure (metal, concrete)
- Heat transfer from wire-wrapped rods bundle into prototypic He (7 MPa, up to 850 °C)
 - Validation: System & CFD codes.
 - Facilities: ESTHEL stand (proposed at CEA) has not been built
 - ESTHAIR stand using air & low T only (CEA Grenoble)
 - Exp. data: Best-estimate Nu number & friction factor correlations for bundles
 - Assessment of temp. non-uniformities (hot spots)
 - Design: Feasibility of cladding surface roughening for wire-wrapped claddings

R & D for ALLEGRO: Main priorities after 2015 (2)

- Feasibility of safe N₂ injection into RPV
 - Risk to heavily undercool RPV internals due to N₂ expansion (risk of embrittlement)
- Feasibility of turbomachinery in II. circuit connected electrically with primary blower
 - Modification of the CEA Innovative option (shaft replaced with el. motor & el. wires)
- Core catcher (pre-conceptual design)
 - Size, shape, materials, cooling, ...
- DHR heat exchanger
 - Resistant to high T (1250 °C for 30 min.) & to water boiling at II. side
 - Low flow resistance required
- Valves for I. circuit
 - Disc check valves (DHR HX vessel), Main isolation disc valves (Main HX vessel)
 - Possibly isolation valve for coaxial piping (?)

R & D platforms in the V4G4 Centre of Excellence

- Helium loops: Thermohydraulic phenomena

Natural circulation studies, code validation, core coolability, ...)

- STU He loop (STU Trnava, SK)
- S-ALLEGRO (CV Rez, Pilsen, CZ)
- Helium loops: Material research in controlled He atmosphere
 - HTHL1 (CV Rez, CZ): Out-of-pile
 - HTHL2 (CV Rez, CZ SUSEN): In-pile (LVR-15)
- Helium purification (Univ. Chemistry & Technology, Praha, CV Rez, CZ)
 - Individual stands: Mastering of the GFR & VHTR related technology
- Helium recovery from N2+He mixture (CV Rez, CZ)
 - Membrane stand: Testing of He separation using membranes technology
 - Small-scale demonstration facility: In construction (2020)

Corium interactions (CV Rez, CZ)

• Cold crucible (CV Rez, CZ – SUSEN): Core catcher related material issues

R & D for ALLEGRO on DHR system: He Loop **S-ALLEGRO** (CZ)

The

- **Goal**: To study DHR phenomena (Commissioned in 2019, CV Rez, Plzen, CZ)
- Mock-up of ALLEGRO: 1 MW el., 7 MPa, 260/530 °C, 400/850 °C
- Phase I / II: RPV, 1x / 2x I. loop (main HX He/He), 1x / 3x DHR loop (DHR HX He/water)

R & D for ALLEGRO on DHR system: STU He Loop Trnava (SK)

- Goal: To study decay heat removal phenomenology in natural circulation.
- Design: One loop (heating zone & HX)
- Commissioned in 2016,
- Owned by Slovak Technology University (STU) Bratislava, located in Trnava (SK)

Parameters:

- I. circuit: He 3-7 MPa, 220 kW, ~200 520 °C
- II. circuit: water
- Vertical distance Core to DHR HX: 10 m

He recovery from GV atm.: Experimental stand (CV Rez, CZ)

 Goal: To test membrane separation of He from N₂+He mixture

- First tests with Polymer PRISM® membrane (for max. 40 °C) in a dedicated stand.
 - Sufficient selectivity for He has been confirmed.
- To be tested: Ceramic membranes

Underway:

Development of a demonstration small-scale facility for testing & verification of **He recovery from GFR GV atmosphere** (N2+He) using a membrane separation.

Cold crucible: Material research (CV Rez, CZ)

- Project planned for ALLEGRO-related
 core catcher research
- To test UO₂/SS corium interaction with innovative sacrificial material

Parameters

Power supply Transistor generator:

Tube generator:

Output power 300 kW Frequency 100 – 800 kHz Output power 160 kW Frequency 1.5 – 2.0 MHz

Crucible

Volume of the melt up to 20 dm³ Up to 50 kg melt with temperature 3000 °C

Pulling system

Pulling rate: 0.1-1.5 mm/min

Vacuum chamber

Melting in any atmosphere Melting of radioactive materials

40

Helium loops HTHL1, HTHL2 (CV Rez, CZ) for material research

- Both loops are nearly identical (HTHL1: Out-of-pile HTHL2: In-pile)
 - Max. ~850 C, 7 MPa He, 38 kg He/h, coupons or tubular specimens
 - HTHL2: To be inserted into the atrium fuel of LVR-15 (CV Rez):

- Thermal: 1.5.10¹⁴ n/cm²/s
- Fast: 2.5·10¹⁴ n/cm²/s
- Electrically heated test section for samples:

D=<60 mm, H=~500 mm

Perspectives of ALLEGRO & Conclusions (1)

- ALLEGRO (compared to LMFBR) In the phase of proving feasibility & passive safety
- ALLEGRO CEA 2009 is a good technical base for further development by V4G4 CoE
 - Its safety characteristics need substantial improvement
 - ... while respecting 1) <u>Technical feasibility</u> and 2) <u>Target mission</u> of the demonstrator.
- V4G4 CoE (2013) is a good legal base for restarting the development work
- Short-term priorities in the development:
 - Achieve reasonable level of safety using passive systems (where possible)
 - Design UOX-based driver core
 - ... while maintaining sufficient power density & irradiation characteristics (SiC dpa)

Perspectives of ALLEGRO & Conclusions (2)

- Short-term priorities in the R&D (driven by the design requirements)
 - Coolability in protected transients using natural convection
 - Feasibility of Guard vessel for elevated pressure
 - Optimization of DHR system (valves, HX, pressure drop, ...)
 - Turbomachinery in II. circuit
 - Potentially alternative cladding material for the driver core

Simulation tools need additional validation

- Neutronic & thermohydraulic codes
- Fuel performance codes

