Project SPIRAL2-CZ and nuclear astrophysics collaboration with GANIL/SPIRAL2

Jaromír Mrázek

Nuclear Physics Institute of the CAS, Rez, Czech Republic

April 26, 2019

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

2nd French-Czech "Barrande" meeting 24-26 April 2019

Jaromir Mrazek

1 NPI CAS

Iocation and the experimental base

2 Project SPIRAL2-CZ

Advertising posters on activation

3 Nuclear astrophysics in Řež

- Asymptotic Normalization Coefficients
- Trojan Horse Method
- ²⁶Al efforts

└─location and the experimental base

Nuclear Physics Institute of the CAS

Located near Prague in Řež

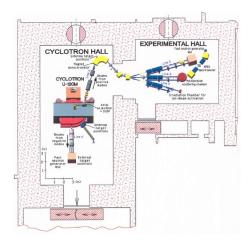
- Accelerators:
 - Cyclotron U120M
 p+/ H-: 5.4–38 MeV,
 D+/ D-: 11–20.5 MeV
 ³He+2: 16.2–55 MeV,
 ⁴He+2: 22–40 MeV
 - Cyclotron TR24 (new) protons 8 MeV to 24 MeV, CUSP ion source, up to 300µA
 - Tandetron 4130 MC (3MV)
 H - Au 0.4-20 MeV up to tens of mA
 RBS, RBS-channeling, ERDA, ERDA-TOF, PIXE, PIGE, ion
 micropobe 1µm

Project SPIRAL2-CZ and nuclear astrophysics
NPI CAS
Ication and the experimental base

Nuclear Physics Institute of the CAS

Located near Prague in Řež

Accelerators:


- Cyclotron U120M
 p+/ H-: 5.4–38 MeV,
 D+/ D-: 11–20.5 MeV,
 ³He+2: 16.2–55 MeV,
 ⁴He+2: 22–40 MeV
- Cyclotron TR24 (new) protons 8 MeV to 24 MeV, CUSP ion source, up to 300μA
- Tandetron 4130 MC (3MV)
 H - Au 0.4-20 MeV up to tens of mA
 RBS, RBS-channeling, ERDA, ERDA-TOF,
 PIXE, PIGE, ion
 microprobe 1µm

└─location and the experimental base

Nuclear Physics Institute of the CAS

- Located near Prague in Řež
- Accelerators:
 - Cyclotron U120M p+/ H-: 5.4–38 MeV, D+/ D-: 11–20.5 MeV, ³He+2: 16.2–55 MeV, ⁴He+2: 22–40 MeV
 - Cyclotron TR24 (new) protons 8 MeV to 24 MeV, CUSP ion source, up to 300µA
 - Tandetron 4130 MC (3MV)
 H - Au 0.4-20 MeV u
 - to tens of mA RBS, RBS-channeling, ERDA, ERDA-TOF, PIXE, PIGE, ion microprobe 1µm

└─location and the experimental base

Nuclear Physics Institute of the CAS

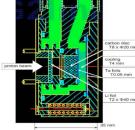
- Located near Prague in Řež
- Accelerators:
 - Cyclotron U120M
 p+/ H-: 5.4–38 MeV,
 D+/ D-: 11–20.5 MeV
 ³He+2: 16.2–55 MeV,
 ⁴He+2: 22–40 MeV
 - Cyclotron TR24 (new) protons 8 MeV to 24 MeV, CUSP ion source, up to 300μA
 - Tandetron 4130 MC (3MV)
 H - Au 0.4-20 MeV up to tens of mA
 RBS, RBS-channeling, ERDA, ERDA-TOF, PIXE, PIGE, ion
 microprobe 1µm

└─location and the experimental base

Nuclear Physics Institute of the CAS

 Located near Prague in Řež

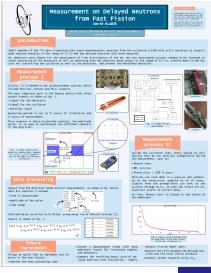
Accelerators:


- Cyclotron U120M
 p+/ H-: 5.4–38 MeV,
 D+/ D-: 11–20.5 MeV,
 ³He+2: 16.2–55 MeV,
 ⁴He+2: 22–40 MeV
- Cyclotron TR24 (new) protons 8 MeV to 24 MeV, CUSP ion source, up to 300µA
- Tandetron 4130 MC (3MV)

H - Au 0.4-20 MeV up to tens of mA RBS, RBS-channeling, ERDA, ERDA-TOF, PIXE, PIGE, ion microprobe 1µm

└─location and the experimental base

 Fast Neutron Generators (FNG)


see talk of M.Ansorge

└─ location and the experimental base

activation by neutrons

see poster of D.Hladik for delayed neutron's measurement

Project SPIRAL2-CZ and nuclear astrophysics
NPI CAS
I location and the experimental base

Project RAMSES AMS 300kV

spectrometer to 2020+

Determination of long-lived radio-nuclides 1^{4} C, 1^{9} Be, 2^{6} Al, cosmogenic nuclides actinides and fission products at levels or in amounts up to 10^{-6} lower compared to decay counting methods

Center of Accelerators and Nuclear Analytical Methods (CANAM)

Project SPIRAL2-CZ

SPIRAL2-CZ as the project of Czech support to GANIL/SPIRAL2

Timeline of the project

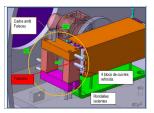
- 2011 LEA NuAG¹ first official support of collaboration NPI CAS and GANIL
- 2015- SPIRAL2 in Roadmap of Large Infrastructures for Research, Experimental Development and Innovation of the Czech Republic for the years 2016-2022
- 2015 LIA NuAG prolongation
- \blacksquare 2016 MEYS² financing the international abroad infrastructure SPIRAL2-CZ \sim 8-12 people on the project
- 2017 MEYS and EU Operational Program research, development and education financing the investments to the infrastructure SPIRAL2-CZ OP
- 2019 green light for the next LIA NuAG
- June 2019 next call of the EU OP program for investments
- 2020 expecting the continuation of the MEYS support for running costs

¹Laboratoire Europèen Associè - Nuclear Astrophysics and Grids ²Ministry of Education, Youth and Sports

content of the project

Two main activities within the project:

- Nuclear astrophysics
- Activation by charged particles and neutrons


Three investments within the project:

Irradiation Chamber (IC) for activation on NFS

Target for radioisotopes with medical potential

Target for production of radioactive beams

see the poster of Eva Šimečková yesterday's talk of Gilles and Ondrej

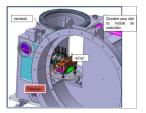
Astrophysics interest

content of the project

Two main activities within the project:

- Nuclear astrophysics
- Activation by charged particles and neutrons

Three investments within the project:

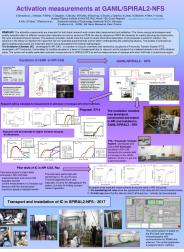

Irradiation Chamber (IC) for activation on NFS

Target for radioisotopes with medical potential

Target for production of radioactive beams

see the poster of Eva Šimečková yesterday's talk of Gilles and Ondrej

Astrophysics interest


Project SPIRAL2-CZ

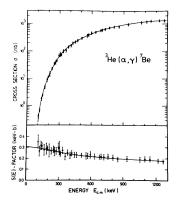
Advertising posters on activation

activation by charged particles

Irradiation Chamber (IC) Pneumatic transport System (PTS)

see poster of Eva Šimečková

GANU

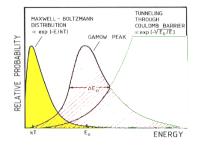

searce and rait of

Nuclear astrophysics

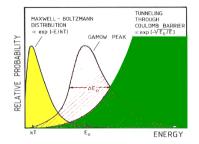
Nuclear astrophysics (in Řež and in collaborations)

The problem of the mesurement of charged particle reaction cross sections at low energies

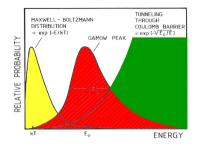
- is the Coulomb barrier



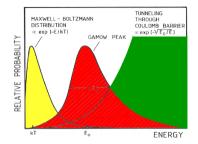
- is the Coulomb barrier


	Coulomb			
reaction	barrier [MeV]			
p+p	0.55			
$\alpha + {}^{12}C$	3.43			
¹⁶ 0+ ¹⁶ 0	14.7			

	T [10 ⁶ K]	kT [keV]	
Sun - core	15	1	
AGB star -(H)	90	8	
AGB star (He)	300	38	
Classical Nova	100 - 400	10 – 50	

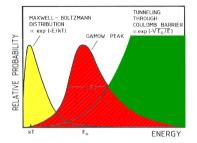

- is the Coulomb barrier
 - high energy tail of Maxwell distribution

- is the Coulomb barrier
 - high energy tail of Maxwell distribution
 - tunneling throught the Coulomb barrier



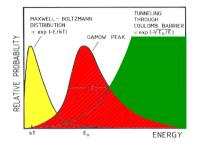
- is the Coulomb barrier
 - high energy tail of Maxwell distribution
 - tunneling throught the Coulomb barrier
 - Gamow peak

- is the Coulomb barrier
 - high energy tail of Maxwell distribution
 - tunneling throught the Coulomb barrier
 - Gamow peak


How to face the low x.s. in measurements ?

- is the Coulomb barrier
 - high energy tail of Maxwell distribution
 - tunneling throught the Coulomb barrier
 - Gamow peak

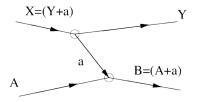
How to face the low x.s. in measurements ?


- huge beam intensities
 - extremely long measurements (together)
 - extremely low background (together)

- is the Coulomb barrier
 - high energy tail of Maxwell distribution
 - tunneling throught the Coulomb barrier
 - Gamow peak

How to face the low x.s. in measurements ?

- huge beam intensities
 - extremely long measurements (together)
 - extremely low background (together)
- indirect methods
 - Asymptotic Normalization Coefficients
 - Trojan Horse Method


🖵 Nuclear astrophysics in Řež

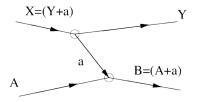
Asymptotic Normalization Coefficients

Asymptotic Normalization Coefficients

Trick: Deducing the **direct radiative capture** cross section from direct transfer reaction

Benefit: Overcoming the Coulomb barrier **Conditions:** The reaction must be direct process and be peripheral.

Typical setup of ANC experiment - with gas target


🖵 Nuclear astrophysics in Řež

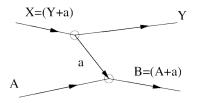
Asymptotic Normalization Coefficients

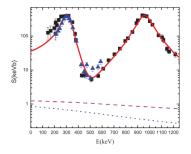
Asymptotic Normalization Coefficients

Trick: Deducing the **direct radiative capture** cross section from direct transfer reaction

Benefit: Overcoming the Coulomb barrier **Conditions:** The reaction must be direct process and be peripheral.

The experimental hall in NPI CAS


└─ Nuclear astrophysics in Řež


Asymptotic Normalization Coefficients

Asymptotic Normalization Coefficients

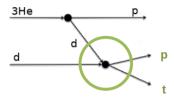
Trick: Deducing the **direct radiative capture** cross section from direct transfer reaction

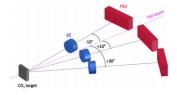
Benefit: Overcoming the Coulomb barrier **Conditions:** The reaction must be direct process and be peripheral.

The example of the result applied to the resonances and the R-matrix fit of the resonances in ^{16}O for $^{15}\text{N}(p,\gamma)^{16}\text{O}$

Project SPIRAL2-CZ and nuclear astrophysics └─ Nuclear astrophysics in Řež └─ Troian Horse Method

Trojan Horse Method


collaboration with INFN LNS Catania: C.Spitaleri, M.LaCognata, G.Pizzone, A.Tumino...


Trick: extraction of the two-body process from the three-body reaction.

Benefit: Overcoming the Coulomb barrier and

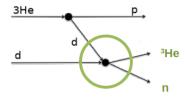
the electron screening

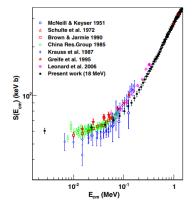
Conditions: carefull selection of the quasi-free component of the three-particle process.

Typical setup of THM experiment

Project SPIRAL2-CZ and nuclear astrophysics └─ Nuclear astrophysics in Řež └─ Troian Horse Method

Trojan Horse Method


collaboration with INFN LNS Catania: C.Spitaleri, M.LaCognata, G.Pizzone, A.Tumino...


Trick: extraction of the two-body process from the three-body reaction.

Benefit: Overcoming the Coulomb barrier and

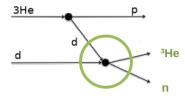
the electron screening

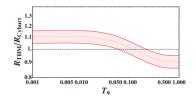
Conditions: carefull selection of the quasi-free component of the three-particle process.

The exctracted S-factor (analog to cross section) for d+d \rightarrow ^{3}He + n

Project SPIRAL2-CZ and nuclear astrophysics └─ Nuclear astrophysics in Řež └─ Troian Horse Method

Trojan Horse Method

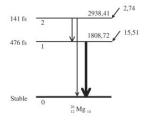

collaboration with INFN LNS Catania: C.Spitaleri, M.LaCognata, G.Pizzone, A.Tumino...

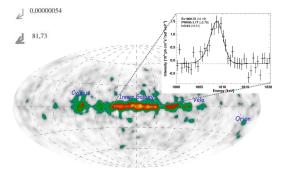

Trick: extraction of the two-body process from the three-body reaction.

Benefit: Overcoming the Coulomb barrier and

the electron screening

Conditions: carefull selection of the quasi-free component of the three-particle process.

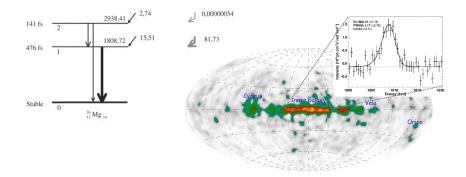



New reaction rate margins relative to the current accepted values from NACRE

Project SPIRAL2-CZ and nuclear astrophysics └─ Nuclear astrophysics in Řež └─ ²⁶Al efforts

COMPTEL and INTEGRAL/SPI observations of ²⁶Al

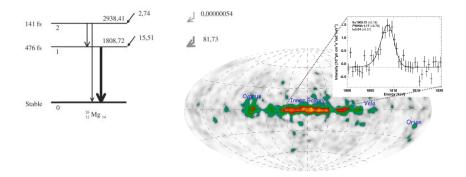
$$\epsilon \qquad 2 \beta^{+} \frac{26}{13} Al_{13} = 7,17 \cdot 10^{5} a$$



Project SPIRAL2-CZ and nuclear astrophysics └─ Nuclear astrophysics in Řež └─²⁶Al efforts

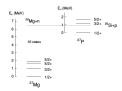
COMPTEL and INTEGRAL/SPI observations of ²⁶AI

$$\epsilon$$
 $\beta^{+} \frac{26}{13} \text{Al}_{13}$ $7,17 \cdot 10^{5} \text{ a}$



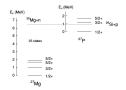
3 solar masses of ^{26}Al in our galaxy $T_{1/2}\sim700$ ky

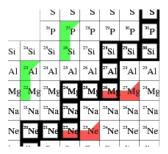
²⁶Al efforts


COMPTEL and INTEGRAL/SPI observations of ²⁶AI

$$\ell_{\epsilon}$$
 $\mathcal{L}_{\beta^{*}} \xrightarrow{\infty}_{D} AI_{D}$ 7,17 · 10⁵ a

3 solar masses of 26 Al in our galaxy $T_{1/2}\sim$ 700 ky Conclusions: origin is mostly massive stars (ccSN, Wolf-Rayet stars?)


We analyze reaction ${}^{26}Mg(d,p){}^{27}Mg$ to deduce **ANC** for mirror ${}^{26}Si(p,\gamma) {}^{27}P$ Bypass of Mg-Al cycle through ${}^{25}Al(p,\gamma)$ (contradicting experimental conclusions)


		S	S	S	S	S	s
		²⁶ P	"P	²⁸ P	29P	з¤Р	"Р
Si	²⁴ Si	²⁵ Si	[≫] Si	²'Si	²¹ Si	²9Si	™Si
Al	²¹ A1	24A1	²⁵ A1	26 Al	²'A1	²⁸ Al	29A1
Mg	²² Mg	²³ Mg	²⁴ Mg	²⁴ Mg	²⁶ Mş	²⁷ Mg	²⁸ Mg
Na	²¹ Na	²² Na	²³ Na	²⁴ Na	²⁵ Na	²⁶ Na	²⁷ Na
Ne	20Ne	²¹ Ne	²² Ne	²¹ Ne	²⁴ Ne	²⁵ Ne	²⁶ Ne

Project SPIRAL2-CZ and nuclear astrophysics └─ Nuclear astrophysics in Řež └─ ²⁶Al efforts

We analyze reaction ${}^{26}Mg(d,p){}^{27}Mg$ to deduce **ANC** for mirror ${}^{26}Si(p,\gamma) {}^{27}P$ Bypass of Mg-Al cycle through ${}^{25}Al(p,\gamma)$ (contradicting experimental conclusions)

Project of THM with INFN LNS and GANIL with ²⁶Al beam (p,α) preparation of 70 μ g of ²⁶Al from ²⁶Mg using new Hi-Power target developed for neutron generators (see the talk of Martin Ansorge).

Jaromir Mrazek

Thank you for the attention, thanks to the organizers