

Time resolved laser induced fluorescence spectroscopy at FNSPE

Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Dept. of Nuclear Chemistry

- Nuclear systems and fuel cycles are significantly evolving efficiency of the resources consumption, safety of reactors, waste repository and a resistance towards proliferation
- Different options allowing decreasing waste volume, toxicity and residual heat have to be studied.
 - Among others, recycling minor actinides, particularly americium, is of high interest due to its major contribution to waste long term toxicity and heat power.
- Processes for minor actinides recycling were developed e.g.
 - The recovery of all transuranium elements from the high activity spent fuel dissolution solution
 - or the recovery of Am and Cm together
 - or the separation of Am alone.

- Different extraction processes based on coordination chemistry were designed for each option, but a representative process modelling needs an description of the structure and the thermodynamics aspects of the systems.
 - Due to the electron configuration Ln and MA are difficult to be distinguish chemically
 - They have different optical properties
 - Remove chemically, but testing optically
 - Advantage Work in small amounts
- Various spectroscopic techniques could provide information; TRLFS could be powerful tool to identify the extracted species and evaluate the effectiveness of the extraction process.
 - Complexation Ln and MA
 - Reaction kinetics
 - Long-term stability of the complex
 - Molecule architecture

Time Resolved Laser Induced Fluorescence Spectroscopy

- Is a modern laser spectroscopic method used for studying chemical forms (species) in which elements are present even in trace concentrations.
- Non-destructive measurements of liquid and solid samples in real time
 - Selectivity
 - Sensitivity (ability to work at concentrations <10⁻⁸ M and lower)
 - Speed (optional kinetic studies)
- Studied mainly
 - Ianthanides Eu, Tb, Gd, Dy, Sm, Ce, Tm, Nd, Ho, Er, Yb...
 - actinides U, Cm, Am, Cf, Es, Bk, Np , Pu...

TRLFS – method principles

- Is based on short-pulse laser excitation of various forms of the studied element and measurement of the luminescence signal characteristics.
 - The sample is irradiated with laser pulses of a selected wavelength absorption
 - Quantum system (central atom) absorbs a photon enters into the excited state
 - Transition to the ground state follows
 - Non-radiative transitions (very fast) quantum system goes to the lowest excited state. Usually energy transfer direction to the solvent
 - Excited component (complex) emits a photon and system returns to the basic state

- Following the spectra of emitted wavelengths (spectra shape)
 - Emitted photons are characteristic for the element
 - Spectrum of fluorescence signal is done by a difference of energy levels between which the luminescent transition occurs, depends also on the form (ion, complex, solvated molecule, etc.)

TRLFS – how to identify

- Following the lifetime
 - To each specie correspond a characteristic fluorescence lifetime (radiation intensity drops to 1/e = 36.8% of initial value)
 - The changes in the emission spectra are due to variations in the first coordination sphere of the fluorescent central metal ion and indicate inner-sphere complexation processes.
 - The fluorescence lifetime increases with decreasing number of quenching molecules in the first sphere.
- This creates a 3D spectrum showing the dependence of the intensities of luminescence for the respective wavelength in time
 - Time resolution is achieved by successive delaying of spectra acquisition against the excitation pulse.

For each time interval, determine the total fluorescence intensity

· Specify local maxima and determine the lifetime of a given maximum

- Tunable laser NT342C Ekspla, OPO based 210-2600 nm
 - Wavelngth range 410-2600 nm, pump on 355 nm Nd:YAG (150 mJ).
 Signal 410-710 nm, Idler 710-2600 nm
 - Extension in to UV via module SH/SF generator 210-410 nm
 - Output for THG-355 nm and FHG-266 nm.
 - Length of output laser pulse 3-5 ns following the wavelength
- Attenuator
 - Made from two Glan polarizers, Beam dumps (to dissipate heat)
 - Attenuation range from 0,1% to ~ 80% in 350-2000 nm

- Monochromator/spectrograph MS257 LOT-Oriel with four gratings(150 l/mm 190-800 nm, 300 l/mm 250-1150 nm, 600 l/mm 280-1200 nm, 1200 l/mm 280-1600 nm).
 - Resolution 0,1 nm
- Detection part with ICCD (Intensified Charge Coupled Device) and detection had Andor (DH720i-18F-03), image intensifier (photocatode, MCP (microchannel plate).
 - Gate step 2,4 nm
- Temperature tuneable cell holder TC 101 Quantum Northwest, to avoid fluctuation of the temperature-dependent luminiscence signal
- Joulmeter Field Max II Coherent with J-50 MB-YAG probe
 - 0,5 mJ 3 J, 266- 2100 nm
- Fiber spectrometer Black comet with Concave Grating
 - measurements in the 190-850 nm range, resolution (<0.4nm)

Uranium carbonates results

- Study of behaviour of uranium in the natural environment species creation is highly dependent on the pH.
- We studied systems in which are present alkaline earth metal Mg, Ca, Sr and Ba.
- Samples were prepared near its composition of natural samples. •
- Formation of species was studied in dependence on the concentration of • the alkaline earth metal in solution at a given pH.
- Uranium concentration in all samples was the same 10⁻⁵ mol/l, the ۲ concentration of alkaline earth metal was varied from 2.10⁻² mol/l to z 6.10⁻³ mol/l.

Samples were measured at interval of pH ~ 7 to ~ 8.5.

specie	lifetime[ns]	lifetime [ns] (literature)		
UO ₂ (OH)+	6058 ± 1526	11300 ± 4500		
UO ₂ (OH) ₃ -	313 ± 88	800 ± 100 ; 400		
UO2 ²⁺	1718 ± 42	2000 ± 100		
(UO ₂) ₃ (OH) ₅ +	31180 ± 660	33300 ± 5200		
SrUO ₂ (CO ₃) ₃ ²⁻	18,4 ± 1,5	18,2 ± 2,1		
$Sr_2UO_2(CO_3)_3$	$26,2 \pm 3,5$	28,2 ± 7,1		
(UO ₂) ₃ (OH) ₅ +	27779 ± 5096	33300 ± 5200		
(UO ₂) ₂ CO ₃ (OH) ₃ -	2243 ± 446	-		

Uranium concentration measurements

- The linear responses of the uranyl luminescence signal to its concentration at a given intensity of the excitation radiation
- The complexant
 - It serves to reduce the impact of non-irritating processes
 - Reduces the effect of the matrix

- Determination of the amount of uranium in natural waters Surface water, mine water, wells, water supply system, Soil contamination
- Barrier proposals
- Testing of ionex function

measurement with URAPLEX

added salt,	NaCl		KCl		CaCl ₂	
conc. (mol.L ⁻¹)	100 μg.L ⁻¹ U	10 μg.L ⁻¹ U	100 μg.L ⁻¹ U	10 μg.L ⁻¹ U	100 μg.L ⁻¹ U	10 μg.L ⁻¹ U
1×10^{-5}	103.3 ± 0.3	11.3 ± 0.1	102.4 ± 1.5	11.8 ± 1.0	102.5 ± 1.0	11.78 ± 0.02
1×10^{-4}	101.1 ± 1.3	11.8 ± 0.4	103.5 ± 0.1	13.5 ± 2.2	101.1 ± 1.9	10.6 ± 0.5
1×10^{-3}	96.8 ± 0.1	10.0 ± 0.1	98.2 ± 0.3	11.3 ± 0.1	97.5 ± 0.1	10.93 ± 0.01
1×10^{-2}	72.6 ± 3.9	7.7 ± 0.2	74.0 ± 0.8	7.5 ± 0.3	65.0 ± 0.1	6.6 ± 0.1

added salt,	NaNO ₃		KNO ₃		$Ca(NO_3)_2$	
conc. (mol.L ⁻¹)	100 µg.L ⁻¹ U	10 µg.L ⁻¹ U	100 µg.L ⁻¹ U	10 μg.L ⁻¹ U	100 µg.L ⁻¹ U	10 μg.L ⁻¹ U
1 × 10 ⁻⁵	101.0 ± 0.5	11.5 ± 0.2	111.4 ± 0.8	10.8 ± 0.3	102.4 ± 0.1	10.7 ± 0.1
1×10^{-4}	116.2 ± 1.0	11.1 ± 0.01	106.0 ± 7.4	12.2 ± 0.1	102.8 ± 1.2	10.5 ± 0.7
1×10^{-3}	109.4 ± 1.4	14.8 ± 0.1	101.6 ± 1.8	11.8 ± 0.2	109.9 ± 1.0	11.7 ± 0.2
1 × 10 ⁻²	105.2 ± 0.8	12.4 ± 0.5	105.0 ± 0.8	12.4 ± 0.2	105.6 ± 1.2	14.5 ± 0.3

Results of europium speciation in the presence of succinic acid

5//

Figure 2: Spectrum deconvolution of Eu(Suc)⁺ complex (left) and threedimensional time-resolved luminiscence spectrum of Eu(Suc)⁺ complex (right).

Results of europium speciation in the presence of succinic acid

Figure 1: Distribution diagram of Eu in the presence of succinic acid as a function of pH (left), distribution diagram of Eu in the presence of succinic acid as a function of ligand-to-metal ratio (middle) and two-dimensional luminiscence spectra of samples containing Eu and succinic acid as a function of pH.

- Up to now TRLFS studies have been already published with e.g. U(VI), U(IV), Eu(III), Cm(III) and others
- Particularly the europium is often used as a model of fission products from the group of lanthanides and minor actinides.
 - The 5f analog of europium(III) is americium(III).
- Despite the first observation of Am fluorescence emission is more than 25 years old only very few TLRFS investigations of the americium have been performed.
- The interest of Am complexes with TLRFS is limited by the short lifetime of Am (23.4 \pm 1,2 ns in H_2O) which implies a dedicated detection system.
- Absorption of Am (${}^{5}L_{6}$) **504** ± **1** nm (355, 337 nm), emission ${}^{5}D_{1} \rightarrow {}^{7}F_{1}$ (691 nm)

- We tested the detection system from point of view
 - of sensitivity especially for weak signal
 - and short fluorescence decay time measurements.
- For a testing system some species of uranium carbonates were selected because of their relatively short fluorescence lifetime at certain condition.
 - $Ca_2UO_2(CO_3)_3$ decay time is 40 ± 5 ns close to the pH ~ 8
 - SrUO₂(CO₃)₃²⁻ is 18,4 ± 1,5 ns close to the pH ~ 8.
 - ...
- We were able to measure and calculate the decay times of such species even in this relatively short time scale.
- The speciation study for preliminary measurement were performed.

Thank you for your attention